聚焦中国多元教育 深耕教育未来
2025年1月19日 星期日
大连理工大学材料学院科研团队在新型高性能磁流变液的研究上取得新进展
大连理工大学
2023-11-27
www.jyzc.com

近日,大连理工大学材料科学与工程学院董旭峰教授课题组在新型高性能磁流变液研究上取得突破性进展,相关成果以“平衡的魔鬼三角:基于跨尺度颗粒、具备优异综合性能的磁流变液”(Balanced devil triangle: A satisfactory comprehensive performance magnetorheological fluids with cross-scale particles)为题在材料领域著名期刊《先进功能材料》(Advanced Functional Materials)上发表。研究成果为重要工程结构在复杂振动环境下的智能减振提供一种综合性能优异的智能材料。

磁流变液是一种具有广阔应用前景的智能材料,特别适用于结构智能减振领域。目前磁流变液的剪切屈服强度、沉降稳定性和零场粘度等关键性能指标之间存在相互影响,如何平衡这些关键性能指标、开发综合性能优异的磁流变液是制约结构智能减振技术发展的瓶颈问题,也是智能材料领域的研究前沿和热点。

该研究团队基于跨尺度磁性颗粒开发了综合性能优异的磁流变液,实现了剪切屈服强度、沉降稳定性和零场粘度等关键性能指标的平衡。该研究采用直流电弧等离子体法制备具有高饱和磁化强度的FeCo纳米颗粒,将其与微米羰基铁颗粒按优化比例复配,构建一种新型的微纳米颗粒双分散磁流变液体系。相比于传统微米羰基铁粉磁流变液体系,微纳米颗粒双分散磁流变液体系的剪切屈服强度和沉降稳定性都得到了极大的提高,同时零场粘度和再分散性没有明显的劣化,剪切屈服强度从52 kPa提升到58.3 kPa,沉降稳定性从60.1%提升到82.6%,零场粘度仅从0.87 Pa·s升高到1.25 Pa·s,再分散性仅从1.3%增加到了1.5%。该研究完美地解决了目前磁流变液关键性能指标难以平衡的问题,为结构智能减振技术的应用提供了高性能的智能材料。

微纳双分散体系磁流变液的剪切屈服强度提升机理示意图

微纳双分散体系磁流变液的沉降稳定性和零场粘度提升机理示意图